Tutorial on Schubert Varieties and Schubert Calculus

Sara Billey
University of Washington
http://www.math.washington.edu/~billey

ICERM Tutorials
February 27, 013

Philosophy

"Combinatorics is the equivalent of nanotechnology in mathematics."

Outline

1. Background and history of Grassmannians
2. Schur functions
3. Background on Flag Manifolds
4. Schubert polynomials
5. The Big Picture

Enumerative Geometry

Approximately 150 years ago... Grassmann, Schubert, Pieri, Giambelli, Severi, and others began the study of enumerative geometry.

Early questions:

- What is the dimension of the intersection between two general lines in \mathbb{R}^{2} ?
- How many lines intersect two given lines and a given point in \mathbb{R}^{3} ?
- How many lines intersect four given lines in \mathbb{R}^{3} ?

Modern questions:

- How many points are in the intersection of 2,3,4,... Schubert varieties in general position?

Schubert Varieties

A Schubert variety is a member of a family of projective varieties which is defined as the closure of some orbit under a group action in a homogeneous space $\boldsymbol{G} / \boldsymbol{H}$.

Typical properties:

- They are all Cohen-Macaulay, some are "mildly" singular.
- They have a nice torus action with isolated fixed points.
- This family of varieties and their fixed points are indexed by combinatorial objects; e.g. partitions, permutations, or Weyl group elements.

Schubert Varieties

"Honey, Where are my Schubert varieties?"
Typical contexts:

- The Grassmannian Manifold, $G(n, d)=G L_{n} / P$.
- The Flag Manifold: $G l_{n} / \boldsymbol{B}$.
- Symplectic and Orthogonal Homogeneous spaces: $S p_{2 n} / B, O_{n} / P$
- Homogeneous spaces for semisimple Lie Groups: $\boldsymbol{G} / \boldsymbol{P}$.
- Affine Grassmannians: $\mathcal{L}_{G}=G\left(\mathbb{C}\left[z, z^{-1}\right]\right) / \widetilde{P}$.

More exotic forms: matrix Schubert varieties, Richardson varieties, spherical varieties, Hessenberg varieties, Goresky-MacPherson-Kottwitz spaces, positroids.

Why Study Schubert Varieties?

1. It can be useful to see points, lines, planes etc as families with certain properties.
2. Schubert varieties provide interesting examples for test cases and future research in algebraic geometry, combinatorics and number theory.
3. Applications in discrete geometry, computer graphics, computer vision, and economics.

The Grassmannian Varieties

Definition. Fix a vector space \boldsymbol{V} over $\mathbb{C}\left(\right.$ or $\left.\mathbb{R}, \mathbb{Q}_{\boldsymbol{p}}, \ldots\right)$ with basis $B=$ $\left\{e_{1}, \ldots, e_{n}\right\}$. The Grassmannian variety

$$
G(k, n)=\{k \text {-dimensional subspaces of } V\} \text {. }
$$

Question.

How can we impose the structure of a variety or a manifold on this set?

The Grassmannian Varieties

Answer. Relate $G(\boldsymbol{k}, \boldsymbol{n})$ to the $\boldsymbol{k} \times \boldsymbol{n}$ matrices of rank \boldsymbol{k}.

$$
\begin{aligned}
U & =\operatorname{span}\left\langle 6 e_{1}+3 e_{2}, \quad 4 e_{1}+2 e_{3}, \quad 9 e_{1}+e_{3}+e_{4}\right\rangle \in G(3,4) \\
M_{U} & =\left[\begin{array}{llll}
6 & 3 & 0 & 0 \\
4 & 0 & 2 & 0 \\
9 & 0 & 1 & 1
\end{array}\right]
\end{aligned}
$$

- $U \in G(k, n) \Longleftrightarrow$ rows of M_{U} are independent vectors in V some $k \times k$ minor of M_{U} is NOT zero.

Plücker Coordinates

- Define $f_{j_{1}, j_{2}, \ldots, j_{k}}$ to be the homogeneous polynomial given by the determinant of the matrix

$$
\left[\begin{array}{cccc}
x_{1, j_{1}} & x_{1, j_{2}} & \ldots & x_{1, j_{k}} \\
x_{2, j_{1}} & x_{2, j_{2}} & \ldots & x_{2, j_{k}} \\
\vdots & \vdots & \vdots & \vdots \\
x_{k j_{1}} & x_{k j_{2}} & \ldots & x_{k j_{k}}
\end{array}\right]
$$

- $\boldsymbol{G}(\boldsymbol{k}, \boldsymbol{n})$ is an open set in the Zariski topology on $\boldsymbol{k} \times \boldsymbol{n}$ matrices defined as the union over all k-subsets of $\{1,2, \ldots, n\}$ of the complements of the varieties $V\left(f_{j_{1}, j_{2}, \ldots, j_{k}}\right)$.
- $G(k, n)$ embeds in $\mathbb{P}^{\binom{n}{k}}$) by listing out the Plücker coordinates.

The Grassmannian Varieties

Canonical Form. Every subspace in $G(k, n)$ can be represented by a unique $\boldsymbol{k} \times \boldsymbol{n}$ matrix in row echelon form.

Example.

$$
\begin{aligned}
U & =\operatorname{span}\left\langle 6 e_{1}+3 e_{2}, \quad 4 e_{1}+2 e_{3}, 9 e_{1}+e_{3}+e_{4}\right\rangle \in G(3,4) \\
& \approx\left[\begin{array}{cccc}
6 & 3 & 0 & 0 \\
4 & 0 & 2 & 0 \\
9 & 0 & 1 & 1
\end{array}\right]=\left[\begin{array}{ccc}
3 & 0 & 0 \\
0 & 2 & 0 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{cccc}
2 & 1 & 0 & 0 \\
2 & 0 & 1 & 0 \\
7 & 0 & 0 & 1
\end{array}\right] \\
& \approx\left\langle 2 e_{1}+e_{2}, \quad 2 e_{1}+e_{3}, \quad 7 e_{1}+e_{4}\right\rangle
\end{aligned}
$$

Subspaces and Subsets

Example.

$$
\begin{gathered}
U=\text { RowSpan }\left[\begin{array}{cccccccccc}
5 & 9 & (1) & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
5 & 8 & 0 & 9 & 7 & 9 & 1 & 0 & 0 & 0 \\
4 & 6 & 0 & 2 & 6 & 4 & 0 & 3 & (1) & 0
\end{array}\right] \in G(3,10) . \\
\text { position }(U)=\{3,7,9\}
\end{gathered}
$$

Definition.

If $U \in G(k, n)$ and M_{U} is the corresponding matrix in canonical form then the columns of the leading 1 's of the rows of M_{U} determine a subset of size \boldsymbol{k} in $\{1,2, \ldots, n\}:=[n]$. There are 0 's to the right of each leading 1 and 0 's above and below each leading 1 . This \boldsymbol{k}-subset determines the position of \boldsymbol{U} with respect to the fixed basis.

The Schubert Cell C_{j} in $G(k, n)$

Defn. Let $\mathbf{j}=\left\{j_{1}<j_{2}<\cdots<j_{k}\right\} \in[n]$. A Schubert cell is

$$
C_{\mathrm{j}}=\left\{U \in G(k, n) \mid \operatorname{position}(U)=\left\{j_{1}, \ldots, j_{k}\right\}\right\}
$$

Fact. $G(k, n)=\bigcup C_{\mathrm{j}}$ over all k-subsets of $[n]$.

Example. In $G(3,10)$,

$$
C_{\{3,7,9\}}=\left\{\left[\begin{array}{llllllllll}
* & * & (1) & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
* & * & 0 & * & * & * & (1) & 0 & 0 & 0 \\
* & * & 0 & * & * & * & 0 & * & (1) & 0
\end{array}\right]\right\}
$$

- Observe, $\operatorname{dim}\left(C_{\{3,7,9\}}\right)=2+5+6=13$.
- In general, $\operatorname{dim}\left(C_{\mathrm{j}}\right)=\sum \boldsymbol{j}_{i}-i$.

Schubert Varieties in $G(k, n)$

Defn. Given $\mathrm{j}=\left\{j_{1}<j_{2}<\cdots<j_{k}\right\} \in[n]$, the Schubert variety is $\boldsymbol{X}_{\boldsymbol{\lambda}}=$ Closure of $\boldsymbol{C}_{\boldsymbol{\lambda}}$ under Zariski topology.

Question. In $G(3,10)$, which minors vanish on $C_{\{3,7,9\}}$?

$$
C_{\{3,7,9\}}=\left\{\left[\begin{array}{llllllllll}
* & * & (1) & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
* & * & 0 & * & * & * & (1) & 0 & 0 & 0 \\
* & * & 0 & * & * & * & 0 & * & (1) & 0
\end{array}\right]\right\}
$$

Answer. All minors $f_{j_{1}, j_{2}, j_{3}}$ with $\left\{\begin{array}{c}4 \leq j_{1} \leq 8 \\ \text { or } j_{1}=3 \text { and } 8 \leq j_{2} \leq 9 \\ \text { or } j_{1}=3, j_{2}=7 \text { and } j_{3}=10\end{array}\right\}$
In other words, the canonical form for any subspace in $\boldsymbol{X}_{\mathbf{j}}$ has 0's to the right of column $\boldsymbol{j}_{\boldsymbol{i}}$ in each row \boldsymbol{i}.

k-Subsets and Partitions

Defn. A partition of a number n is a weakly increasing sequence of nonnegative integers

$$
\lambda=\left(\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{k}\right)
$$

such that $n=\sum \boldsymbol{\lambda}_{i}=|\lambda|$.
Partitions can be visualized by their Ferrers diagram

Fact. There is a bijection between k-subsets of $\{1,2, \ldots, n\}$ and partitions whose Ferrers diagram is contained in the $k \times(n-k)$ rectangle given by

$$
\text { shape }:\left\{j_{1}<\ldots<j_{k}\right\} \mapsto\left(j_{1}-1, j_{2}-2, \ldots, j_{k}-k\right) .
$$

A Poset on Partitions

Defn. A partial order or a poset is a reflexive, anti-symmetric, and transitive relation on a set.

Defn. Young's Lattice
If $\boldsymbol{\lambda}=\left(\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{k}\right)$ and $\mu=\left(\mu_{1} \leq \mu_{2} \leq \cdots \leq \mu_{k}\right)$ then $\boldsymbol{\lambda} \subset \boldsymbol{\mu}$ if the Ferrers diagram for $\boldsymbol{\lambda}$ fits inside the Ferrers diagram for $\boldsymbol{\mu}$.

Facts.

$$
\text { 1. } X_{\mathrm{j}}=\bigcup_{\text {shape }(\mathrm{i}) \subset \text { shape }(\mathrm{j})} C_{\mathrm{i}} \text {. }
$$

2. The dimension of $\boldsymbol{X}_{\mathbf{j}}$ is \mid shape $(\mathbf{j}) \mid$.
3. The Grassmannian $G(k, n)=X_{\{n-k+1, \ldots, n-1, n\}}$ is a Schubert variety!

Singularities in Schubert Varieties

Theorem. (Lakshmibai-Weyman) Given a partition $\boldsymbol{\lambda}$. The singular locus of the Schubert variety $X_{\boldsymbol{\lambda}}$ in $\boldsymbol{G}(k, n)$ is the union of Schubert varieties indexed by the set of all partitions $\boldsymbol{\mu} \subset \boldsymbol{\lambda}$ obtained by removing a hook from $\boldsymbol{\lambda}$.

Example. $\operatorname{sing}\left(\left(X_{(4,3,1)}\right)=X_{(4)} \cup X_{(2,2,1)}\right.$

Corollary. $\boldsymbol{X}_{\boldsymbol{\lambda}}$ is non-singular if and only if $\boldsymbol{\lambda}$ is a rectangle.

Enumerative Geometry Revisited

Question. How many lines intersect four given lines in $\mathbb{R}^{\mathbf{3}}$?
Translation. Given a line in \mathbb{R}^{3}, the family of lines intersecting it can be interpreted in $G(2,4)$ as the Schubert variety

$$
X_{\{2,4\}}=\overline{\left(\begin{array}{cccc}
* & 1 & 0 & 0 \\
* & 0 & * & 1
\end{array}\right)}
$$

with respect to a suitably chosen basis determined by the line.
Reformulated Question. How many subspaces $U \in G(2,4)$ are in the intersection of 4 copies of the Schubert variety $\boldsymbol{X}_{\{2,4\}}$ each with respect to a different basis?

Modern Solution. Use Schubert calculus!

Schubert Calculus/Intersection Theory

- Schubert varieties induce canonical basis elements of the cohomology ring $\boldsymbol{H}^{*}(\boldsymbol{G}(\boldsymbol{k}, \boldsymbol{n}))$ called Schubert classes: $\left[\boldsymbol{X}_{\mathrm{j}}\right]$.
- Multiplication in $\boldsymbol{H}^{*}(G(k, n))$ is determined by intersecting Schubert varieties with respect to generically chosen bases

$$
\left[X_{\mathrm{i}}\right]\left[X_{\mathrm{j}}\right]=\left[\boldsymbol{X}_{\mathrm{i}}\left(B^{1}\right) \cap \boldsymbol{X}_{\mathrm{j}}\left(B^{2}\right)\right]
$$

- The entire multiplication table is determined by

Giambelli Formula: $\left[\boldsymbol{X}_{\mathbf{i}}\right]=\operatorname{det}\left(e_{\lambda_{i}^{\prime}-i+j}\right)_{1 \leq i, j \leq k}$
Pieri Formula: $\quad\left[\boldsymbol{X}_{\mathbf{i}}\right] e_{r}=\sum\left[\boldsymbol{X}_{\mathbf{j}}\right]$

Intersection Theory/Schubert Calculus

- Schubert varieties induce canonical basis elements of the cohomology ring $\boldsymbol{H}^{*}(\boldsymbol{G}(\boldsymbol{k}, \boldsymbol{n}))$ called Schubert classes: $\left[\boldsymbol{X}_{\mathrm{j}}\right]$.
- Multiplication in $\boldsymbol{H}^{*}(\boldsymbol{G}(\boldsymbol{k}, \boldsymbol{n}))$ is determined by intersecting Schubert varieties with respect to generically chosen bases

$$
\left[X_{\mathbf{i}}\right]\left[X_{\mathbf{j}}\right]=\left[X_{\mathbf{i}}\left(B^{1}\right) \cap X_{\mathbf{j}}\left(B^{2}\right)\right]
$$

- The entire multiplication table is determined by

Giambelli Formula: $\left[\boldsymbol{X}_{\mathrm{i}}\right]=\operatorname{det}\left(e_{\lambda_{i}^{\prime}-i+j}\right)_{1 \leq i, j \leq k}$

$$
\text { Pieri Formula: } \quad\left[\boldsymbol{X}_{\mathbf{i}}\right] e_{r}=\sum\left[\boldsymbol{X}_{\mathbf{j}}\right]
$$

where the sum is over classes indexed by shapes obtained from shape(i) by removing a vertical strip of r cells.

- $\lambda^{\prime}=\left(\lambda_{1}^{\prime}, \ldots, \lambda_{k}^{\prime}\right)$ is the conjugate of the box complement of shape(i).
- e_{r} is the special Schubert class associated to $k \times n$ minus r boxes along the right col. e_{r} is a Chern class in the Chern roots x_{1}, \ldots, x_{n}.

Intersection Theory/Schubert Calculus

Schur functions $S_{\boldsymbol{\lambda}}$ are a fascinating family of symmetric functions indexed by partitions which appear in many areas of math, physics, theoretical computer science, quantum computing and economics.

- The Schur functions $\boldsymbol{S}_{\boldsymbol{\lambda}}$ are symmetric functions that also satisfy

Giambelli/Jacobi-Trudi Formula: $S_{\lambda}=\operatorname{det}\left(e_{\lambda_{i}^{\prime}-i+j}\right)_{1 \leq i, j \leq k}$

Pieri Formula: $\quad S_{\lambda} e_{r}=\sum S_{\mu}$.

- Thus, as rings $H^{*}(G(k, n)) \approx \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]^{S_{n}} /\left\langle S_{\lambda}: \lambda \not \subset k \times n\right\rangle$.
- Expanding the product of two Schur functions into the basis of Schur functions can be done via linear algebra:

$$
S_{\lambda} S_{\mu}=\sum c_{\lambda, \mu}^{\nu} S_{\nu}
$$

- The coefficients $c_{\lambda, \mu}^{\nu}$ are non-negative integers called the LittlewoodRichardson coefficients.

Schur Functions

Let $\boldsymbol{X}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be an alphabet of indeterminants.
Let $\boldsymbol{\lambda}=\left(\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{k}>0\right)$ and $\lambda_{p}=0$ for $p \geq \boldsymbol{k}$.
Defn. The following are equivalent definitions for the Schur functions $\boldsymbol{S}_{\boldsymbol{\lambda}}(\boldsymbol{X})$:

1. $S_{\lambda}=\operatorname{det}\left(e_{\lambda_{i}^{\prime}-i+j}\right)=\operatorname{det}\left(h_{\lambda_{i}-i+j}\right)$
2. $S_{\lambda}=\frac{\operatorname{det}\left(x_{i}^{\lambda_{j}+n-j}\right)}{\operatorname{det}\left(x_{i}^{n-j}\right)}$ with indices $1 \leq i, j \leq m$.
3. $S_{\boldsymbol{\lambda}}=\sum \boldsymbol{x}^{T}$ summed over all column strict tableaux \boldsymbol{T} of shape $\boldsymbol{\lambda}$.
4. $\boldsymbol{S}_{\boldsymbol{\lambda}}=\sum \boldsymbol{F}_{D(T)}(\boldsymbol{X})$ summed over all standard tableaux \boldsymbol{T} of shape $\boldsymbol{\lambda}$.

Schur Functions

Defn. $\boldsymbol{S}_{\boldsymbol{\lambda}}=\sum \boldsymbol{F}_{\boldsymbol{D}(\boldsymbol{T})}(\boldsymbol{X})$ over all standard tableaux \boldsymbol{T} of shape $\boldsymbol{\lambda}$.

Defn. A standard tableau \boldsymbol{T} of shape $\boldsymbol{\lambda}$ is a saturated chain in Young's lattice from \emptyset to $\boldsymbol{\lambda}$. The descent set of \boldsymbol{T} is the set of indices \boldsymbol{i} such that $\boldsymbol{i}+\mathbf{1}$ appears northwest of i.

Example.

$$
T=\begin{array}{|l|l|lll}
\hline 7 & & & \\
\hline & 5 & 9 & & \\
\hline 1 & 2 & 3 & 6 & 8 \\
\hline
\end{array} \quad D(T)=\{3,6,8\} .
$$

Defn. The fundamental quasisymmetric function

$$
F_{D(T)}(X)=\sum x_{i_{1}} \cdots x_{i_{p}}
$$

summed over all $1 \leq i_{1} \leq \ldots \leq i_{p}$ such that $i_{j}<i_{j+1}$ whenever $j \in D(T)$.

Littlewood-Richardson Rules

Recall if $\boldsymbol{S}_{\boldsymbol{\lambda}} \boldsymbol{S}_{\boldsymbol{\mu}}=\sum \boldsymbol{c}_{\boldsymbol{\lambda}, \boldsymbol{\mu}}^{\boldsymbol{\nu}} \boldsymbol{S}_{\boldsymbol{\nu}}$, then the coefficients $\boldsymbol{c}_{\boldsymbol{\lambda}, \mu}^{\boldsymbol{\nu}}$, are non-negative integers called Littlewood-Richardson coefficients.

Littlewood-Richardson Rules.

1. Schützenberger: Fix a standard tableau \boldsymbol{T} of shape $\boldsymbol{\nu}$. Then $\boldsymbol{c}_{\boldsymbol{\lambda}, \mu}^{\nu}$ equals the number of pairs of standard tableaux of shapes $\boldsymbol{\lambda}, \boldsymbol{\mu}$ which straighten under the rules of jeu de taquin into T.
2. Yamanouchi Words: $\boldsymbol{c}_{\boldsymbol{\lambda}, \mu}^{\nu}$ equals the number of column strict fillings of the skew shape $\boldsymbol{\nu} / \boldsymbol{\mu}$ with $\boldsymbol{\lambda}_{\mathbf{1}} 1$'s, $\boldsymbol{\lambda}_{\mathbf{2}} 2$'s, etc such that the reverse reading word always has more 1's than 2's, more 2's than 3's, etc.
3. Remmel-Whitney rule: $\boldsymbol{c}_{\boldsymbol{\lambda}, \mu}^{\nu}$ equals the number of leaves of shape $\boldsymbol{\nu}$ in the tree of standard tableaux with root given by the standard labeling of $\boldsymbol{\lambda}$ and growing on at each level respecting two adjacency rules.
4. Knutson-Tao Puzzles: $\boldsymbol{c}_{\lambda, \mu}^{\nu}$ equals the number of λ, μ, ν - puzzles.
5. Vakil Degenerations: $\boldsymbol{c}_{\boldsymbol{\lambda}, \mu}^{\nu}$ equals the number of leaves in the $\boldsymbol{\lambda}, \boldsymbol{\mu}$-tree of checkerboards with type ν.

Knutson-Tao Puzzles

Example. (Warning: picture is not accurate without description.)

Vakil Degenerations

Show picture.

Enumerative Solution

Reformulated Question. How many subspaces $U \in G(2,4)$ are in the intersection of 4 copies of the Schubert variety $\boldsymbol{X}_{\{2,4\}}$ each with respect to a different basis?

Enumerative Solution

Reformulated Question. How many subspaces $U \in G(2,4)$ are in the intersection of 4 copies of the Schubert variety $\boldsymbol{X}_{\{2,4\}}$ each with respect to a different basis?

Solution.

$$
\left[X_{\{2,4\}}\right]=S_{(1)}=x_{1}+x_{2}+\ldots
$$

By the recipe, compute

$$
\begin{gathered}
{\left[X_{\{2,4\}}\left(B^{1}\right) \cap X_{\{2,4\}}\left(B^{2}\right) \cap X_{\{2,4\}}\left(B^{3}\right) \cap X_{\{2,4\}}\left(B^{4}\right)\right]} \\
=S_{(1)}^{4}=2 S_{(2,2)}+S_{(3,1)}+S_{(2,1,1)} .
\end{gathered}
$$

Answer. The coefficient of $\boldsymbol{S}_{\mathbf{2 , 2}}=\left[\boldsymbol{X}_{1,2}\right]$ is 2 representing the two lines meeting 4 given lines in general position.

Recap

1. $\boldsymbol{G}(\boldsymbol{k}, \boldsymbol{n})$ is the G rassmannian variety of \boldsymbol{k}-dim subspaces in $\mathbb{R}^{\boldsymbol{n}}$.
2. The Schubert varieties in $\boldsymbol{G}(\boldsymbol{k}, \boldsymbol{n})$ are nice projective varieties indexed by \boldsymbol{k}-subsets of $[\boldsymbol{n}]$ or equivalently by partitions in the $\boldsymbol{k} \times(\boldsymbol{n} \boldsymbol{-} \boldsymbol{k})$ rectangle.
3. Geometrical information about a Schubert variety can be determined by the combinatorics of partitions.
4. Schubert Calculus (intersection theory applied to Schubert varieties and associated algorithms for Schur functions) can be used to solve problems in enumerative geometry.

Current Research

1. (Gelfand-Goresky-MacPherson-Serganova) Matroid stratification of $\boldsymbol{G}(\boldsymbol{k}, \boldsymbol{n})$: specify the complete list of Plücker coordinates which are non-zero. What is the cohomology class of the closure of each strata?
2. (Kodama-Williams, Telaska-Williams) Deodhar stratification using Godiagrams. What is the cohomology class of the closure of each strata?
3. (MacPherson) What is a good way to triangulate $\operatorname{Gr}(\mathrm{k}, \mathrm{n})$?

The Flag Manifold

Defn. A complete flag $\boldsymbol{F}_{\bullet}=\left(\boldsymbol{F}_{\mathbf{1}}, \ldots, \boldsymbol{F}_{\boldsymbol{n}}\right)$ in \mathbb{C}^{n} is a nested sequence of vector spaces such that $\operatorname{dim}\left(\boldsymbol{F}_{\boldsymbol{i}}\right)=\boldsymbol{i}$ for $\mathbf{1} \leq \boldsymbol{i} \leq \boldsymbol{n} . \boldsymbol{F}_{\boldsymbol{\bullet}}$ is determined by an ordered basis $\left\langle f_{1}, f_{2}, \ldots f_{n}\right\rangle$ where $F_{i}=\operatorname{span}\left\langle f_{1}, \ldots, f_{i}\right\rangle$.

Example.

$$
F_{\bullet}=\left\langle 6 e_{1}+3 e_{2}, \quad 4 e_{1}+2 e_{3}, \quad 9 e_{1}+e_{3}+e_{4}, \quad e_{2}\right\rangle
$$

The Flag Manifold

Canonical Form.

$$
\begin{aligned}
F_{\bullet} & =\left\langle 6 e_{1}+3 e_{2}, 4 e_{1}+2 e_{3}, 9 e_{1}+e_{3}+e_{4}, e_{2}\right\rangle \\
& \approx\left[\begin{array}{llll}
6 & 3 & 0 & 0 \\
4 & 0 & 2 & 0 \\
9 & 0 & 1 & 1 \\
0 & 1 & 0 & 0
\end{array}\right]=\left[\begin{array}{cccc}
3 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & -2
\end{array}\right]\left[\begin{array}{cccc}
2 & 1 & 0 & 0 \\
2 & 0 & 1 & 0 \\
7 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right] \\
& \approx\left\langle 2 e_{1}+e_{2}, 2 e_{1}+e_{3}, 7 e_{1}+e_{4}, e_{1}\right\rangle
\end{aligned}
$$

$\mathcal{F} l_{n}(\mathbb{C}):=$ flag manifold over $\mathbb{C}^{n} \subset \prod_{k=1}^{n} G(n, k)$
$=\left\{\right.$ complete flags $\left.\boldsymbol{F}_{\boldsymbol{\bullet}}\right\}$
$=B \backslash G L_{n}(\mathbb{C}), \quad B=$ lower triangular mats.

Flags and Permutations

Example. $F_{\bullet}=\left\langle 2 e_{1}+e_{2}, \quad 2 e_{1}+e_{3}, \quad 7 e_{1}+e_{4}, \quad e_{1}\right\rangle \approx\left[\begin{array}{cccc}2 & (1) & 0 & 0 \\ 2 & 0 & 1 & 0 \\ 7 & 0 & 0 & (1) \\ (1) & 0 & 0 & 0\end{array}\right]$
Note. If a flag is written in canonical form, the positions of the leading 1's form a permutation matrix. There are 0 's to the right and below each leading 1. This permutation determines the position of the flag \boldsymbol{F}_{\bullet} with respect to the reference flag $\boldsymbol{E}_{\bullet}=\left\langle e_{1}, e_{2}, e_{3}, e_{4}\right\rangle$.

Many ways to represent a permutation

diagram of a permutation
string diagram

reduced word

position in lex order

The Schubert Cell $C_{w}\left(\boldsymbol{E}_{\bullet}\right)$ in $\mathcal{F} l_{n}(\mathbb{C})$

Defn. $\boldsymbol{C}_{\boldsymbol{w}}\left(\boldsymbol{E}_{\boldsymbol{\bullet}}\right)=$ All flags $\boldsymbol{F}_{\boldsymbol{\bullet}}$ with $\operatorname{position}\left(\boldsymbol{E}_{\boldsymbol{\bullet}}, \boldsymbol{F}_{\boldsymbol{\bullet}}\right)=\boldsymbol{w}$

$$
=\left\{F_{\bullet} \in \mathcal{F} l_{n} \mid \operatorname{dim}\left(E_{i} \cap F_{j}\right)=\operatorname{rk}(w[i, j])\right\}
$$

Example. $\boldsymbol{F}_{\bullet}=\left[\begin{array}{cccc}2 & (1) & 0 & 0 \\ 2 & 0 & 1 & 0 \\ 7 & 0 & 0 & (1) \\ (1) & 0 & 0 & 0\end{array}\right] \in C_{2341}=\left\{\left[\begin{array}{llll}* & 1 & 0 & 0 \\ * & 0 & 1 & 0 \\ * & 0 & 0 & 1 \\ 1 & 0 & 0 & 0\end{array}\right]: * \in \mathbb{C}\right\}$

Easy Observations.

- $\operatorname{dim}_{\mathbb{C}}\left(C_{w}\right)=l(w)=\#$ inversions of w.
- $C_{w}=w \cdot B$ is a B-orbit using the right B action, e.g.
$\left[\begin{array}{cccc}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0\end{array}\right]\left[\begin{array}{cccc}b_{1,1} & 0 & 0 & 0 \\ b_{2,1} & b_{2,2} & 0 & 0 \\ b_{3,1} & b_{3,2} & b_{3,3} & 0 \\ b_{4,1} & b_{4,2} & b_{4,3} & b_{4,4}\end{array}\right]=\left[\begin{array}{cccc}b_{2,1} & b_{2,2} & 0 & 0 \\ b_{3,1} & b_{3,2} & b_{3,3} & 0 \\ b_{4,1} & b_{4,2} & b_{4,3} & b_{4,4} \\ b_{1,1} & 0 & 0 & 0\end{array}\right]$

The Schubert Variety $\boldsymbol{X}_{w}\left(\boldsymbol{E}_{\bullet}\right)$ in $\mathcal{F} l_{n}(\mathbb{C})$

Defn. $\boldsymbol{X}_{\boldsymbol{w}}\left(\boldsymbol{E}_{\boldsymbol{\bullet}}\right)=$ Closure of $\boldsymbol{C}_{\boldsymbol{w}}\left(\boldsymbol{E}_{\boldsymbol{\bullet}}\right)$ under the Zariski topology

$$
=\left\{\boldsymbol{F}_{\bullet} \in \mathcal{F} l_{n} \mid \operatorname{dim}\left(\boldsymbol{E}_{i} \cap \boldsymbol{F}_{j}\right) \geq \operatorname{rk}(\boldsymbol{w}[i, j])\right\}
$$

where $\boldsymbol{E}_{\bullet}=\left\langle e_{1}, e_{2}, e_{3}, e_{4}\right\rangle$.
Example. $\left[\begin{array}{cccc}(1) & 0 & 0 & 0 \\ 0 & * & (1) & 0 \\ 0 & * & 0 & 1 \\ 0 & 1) & 0 & 0\end{array}\right] \in X_{2341}\left(E_{\bullet}\right)=\left\{\left[\begin{array}{llll}* & 1 & 0 & 0 \\ * & 0 & 1 & 0 \\ * & 0 & 0 & 1 \\ 1 & 0 & 0 & 0\end{array}\right]\right\}$
Why?.

Five Fun Facts

Fact 1. The closure relation on Schubert varieties defines a nice partial order.

$$
X_{w}=\bigcup_{v \leq w} C_{v} \quad=\bigcup_{v \leq w} X_{v}
$$

Bruhat order (Ehresmann 1934, Chevalley 1958) is the transitive closure of

$$
w<w t_{i j} \Longleftrightarrow w(i)<w(j)
$$

Example. Bruhat order on permutations in S_{3}.

Observations. Self dual, rank symmetric, rank unimodal.

Bruhat order on S_{4}

Bruhat order on S_{5}

10 Fantastic Facts on Bruhat Order

1. Bruhat Order Characterizes Inclusions of Schubert Varieties
2. Contains Young's Lattice in S_{∞}
3. Nicest Possible Möbius Function
4. Beautiful Rank Generating Functions
5. $[\boldsymbol{x}, \boldsymbol{y}]$ Determines the Composition Series for Verma Modules
6. Symmetric Interval $[\hat{0}, w] \Longleftrightarrow X(w)$ rationally smooth
7. Order Complex of (u, v) is shellable
8. Rank Symmetric, Rank Unimodal and \boldsymbol{k}-Sperner
9. Efficient Methods for Comparison
10. Amenable to Pattern Avoidance

Singularities in Schubert Varieties

Defn. $\boldsymbol{X}_{\boldsymbol{w}}$ is singular at a point $p \Longleftrightarrow$
$\operatorname{dim} \boldsymbol{X}_{\boldsymbol{w}}=l(\boldsymbol{w})<$ dimension of the tangent space to $\boldsymbol{X}_{\boldsymbol{w}}$ at \boldsymbol{p}.

Observation 1. Every point on a Schubert cell $\boldsymbol{C}_{\boldsymbol{v}}$ in $\boldsymbol{X}_{\boldsymbol{w}}$ looks locally the same. Therefore, $p \in C_{v}$ is a singular point \Longleftrightarrow the permutation matrix \boldsymbol{v} is a singular point of $\boldsymbol{X}_{\boldsymbol{w}}$.

Observation 2. The singular set of a varieties is a closed set in the Zariski topology. Therefore, if \boldsymbol{v} is a singular point in $\boldsymbol{X}_{\boldsymbol{w}}$ then every point in \boldsymbol{X}_{v} is singular. The irreducible components of the singular locus of $\boldsymbol{X}_{\boldsymbol{w}}$ is a union of Schubert varieties:

$$
\operatorname{Sing}\left(X_{w}\right)=\bigcup_{v \in \operatorname{maxsing}(\mathrm{w})} X_{v}
$$

Singularities in Schubert Varieties

Fact 2. (Lakshmibai-Seshadri) A basis for the tangent space to $\boldsymbol{X}_{\boldsymbol{w}}$ at \boldsymbol{v} is indexed by the transpositions $t_{i j}$ such that

$$
v t_{i j} \leq w
$$

Definitions.

- Let $\boldsymbol{T}=$ invertible diagonal matrices. The \boldsymbol{T}-fixed points in $\boldsymbol{X}_{\boldsymbol{w}}$ are the permutation matrices indexed by $\boldsymbol{v} \leq \boldsymbol{w}$.
- If $v, v t_{i j}$ are permutations in X_{w} they are connected by a \boldsymbol{T}-stable curve. The set of all \boldsymbol{T}-stable curves in $\boldsymbol{X}_{\boldsymbol{w}}$ are represented by the Bruhat graph on $[i d, w]$.

Bruhat Graph in S_{4}

Tangent space of a Schubert Variety

Example. $T_{1234}\left(X_{4231}\right)=\operatorname{span}\left\{x_{i, j} \mid t_{i j} \leq w\right\}$.

$\operatorname{dim} X(4231)=5 \quad \operatorname{dim} T_{i d}(4231)=6 \Longrightarrow X(4231)$ is singular!

Five Fun Facts

Fact 3. There exists a simple criterion for characterizing singular Schubert varieties using pattern avoidance.

Theorem: Lakshmibai-Sandhya 1990 (see also Haiman, Ryan, Wolper) $\boldsymbol{X}_{\boldsymbol{w}}$ is non-singular $\Longleftrightarrow \boldsymbol{w}$ has no subsequence with the same relative order as 3412 and 4231.

| $w=625431$ | contains | $6241 \sim 4231$ | $\Longrightarrow \boldsymbol{X}_{625431}$ is singular |
| :--- | :---: | :---: | :---: | :---: |
| Example: $w=612543$ | avoids | 4231 | |
| | $\& 3412$ | | |

Five Fun Facts

Fact 4. There exists a simple criterion for characterizing Gorenstein Schubert varieties using modified pattern avoidance.

Theorem: Woo-Yong (Sept. 2004)
$\boldsymbol{X}_{\boldsymbol{w}}$ is Gorenstein

- w avoids 31542 and 24153 with Bruhat restrictions $\left\{t_{15}, t_{23}\right\}$ and $\left\{t_{15}, t_{34}\right\}$
- for each descent \boldsymbol{d} in \boldsymbol{w}, the associated partition $\boldsymbol{\lambda}_{\boldsymbol{d}}(\boldsymbol{w})$ has all of its inner corners on the same antidiagonal.

See "A Unification Of Permutation Patterns Related To Schubert Varieties" by Henning Úlfarsson (arxiv 2012).

Five Fun Facts

Fact 5. Schubert varieties are useful for studying the cohomology ring of the flag manifold.

Theorem (Borel): $H^{*}\left(\mathcal{F} l_{n}\right) \cong \frac{\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]}{\left\langle e_{1}, \ldots e_{n}\right\rangle}$.

- The symmetric function $e_{i}=\sum_{1 \leq k_{1}<\cdots<k_{i} \leq n} x_{k_{1}} x_{k_{2}} \ldots x_{k_{i}}$.
- $\left\{\left[X_{w}\right] \mid \boldsymbol{w} \in S_{n}\right\}$ form a basis for $\boldsymbol{H}^{*}\left(\mathcal{F} l_{n}\right)$ over \mathbb{Z}.

Question. What is the product of two basis elements?

$$
\left[\boldsymbol{X}_{u}\right] \cdot\left[\boldsymbol{X}_{v}\right]=\sum\left[\boldsymbol{X}_{w}\right] c_{u v}^{w} .
$$

Cup Product in $H^{*}\left(\mathcal{F} l_{n}\right)$

One Answer. Use Schubert polynomials! Due to Lascoux-Schützenberger, Bernstein-Gelfand-Gelfand, Demazure.

- BGG: Set $\left[X_{i d}\right] \equiv \prod_{i>j}\left(x_{i}-x_{j}\right) \in \frac{\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]}{\left\langle e_{1}, \ldots e_{n}\right\rangle}$ If $\mathfrak{S}_{\boldsymbol{w}} \equiv\left[\boldsymbol{X}_{\boldsymbol{w}}\right] \bmod \left\langle e_{1}, \ldots e_{n}\right\rangle$ then

$$
\partial_{i} \mathfrak{S}_{w}=\frac{\mathfrak{S}_{w}-s_{i} \mathfrak{S}_{w}}{x_{i}-x_{i+1}} \equiv\left[\boldsymbol{X}_{w s_{i}}\right] \text { if } l(w)<l\left(w s_{i}\right)
$$

- LS: Choosing $\left[\mathrm{X}_{i d}\right] \equiv x_{1}^{n-1} x_{2}^{n-2} \cdots x_{n-1}$ works best because product expansion can be done without regard to the ideal!
- Here $\operatorname{deg}\left[\boldsymbol{X}_{\boldsymbol{w}}\right]=\operatorname{codim}\left(\boldsymbol{X}_{\boldsymbol{w}}\right)$.

Schubert polynomials for S_{4}

$$
\begin{aligned}
& \mathcal{S}_{w_{0}(1234)}=1 \\
& \mathcal{S}_{w_{0}(2134)}=x_{1} \\
& \boldsymbol{S}_{w_{0}(1324)}=x_{2}+x_{1} \\
& \mathcal{S}_{w_{0}(3124)}=x_{1}^{2} \\
& \mathcal{S}_{w_{0}(2314)}=x_{1} x_{2} \\
& \mathcal{S}_{w_{0}(3214)}=x_{1}^{2} x_{2} \\
& \mathcal{S}_{w_{0}(1243)}=x_{3}+x_{2}+x_{1} \\
& \mathfrak{S}_{w_{0}(2143)}=x_{1} x_{3}+x_{1} x_{2}+x_{1}^{2} \\
& S_{w_{0}(1423)}=x_{2}^{2}+x_{1} x_{2}+x_{1}^{2} \\
& \mathcal{S}_{w_{0}(4123)}=x_{1}^{3} \\
& \mathcal{S}_{w_{0}(2413)}=x_{1} x_{2}^{2}+x_{1}^{2} x_{2} \\
& \mathcal{S}_{w_{0}(4213)}=x_{1}^{3} x_{2} \\
& \boldsymbol{S}_{w_{0}(1342)}=x_{2} x_{3}+x_{1} x_{3}+x_{1} x_{2} \\
& S_{w_{0}(3142)}=x_{1}^{2} x_{3}+x_{1}^{2} x_{2} \\
& \mathcal{S}_{w_{0}(1432)}=x_{2}^{2} x_{3}+x_{1} x_{2} x_{3}+x_{1}^{2} x_{3}+x_{1} x_{2}^{2}+x_{1}^{2} x_{2} \\
& \mathfrak{S}_{w_{0}(4132)}=x_{1}^{3} x_{3}+x_{1}^{3} x_{2} \\
& \mathcal{S}_{w_{0}(3412)}=x_{1}^{2} x_{2}^{2} \\
& \mathcal{S}_{w_{0}(4312)}=x_{1}^{3} x_{2}^{2} \\
& \mathcal{S}_{w_{0}(2341)}=x_{1} x_{2} x_{3} \\
& \mathcal{S}_{w_{0}(3241)}=x_{1}^{2} x_{2} x_{3} \\
& \mathcal{S}_{w_{0}(2431)}=x_{1} x_{2}^{2} x_{3}+x_{1}^{2} x_{2} x_{3}
\end{aligned}
$$

Cup Product in $H^{*}\left(\mathcal{F} l_{n}\right)$

Key Feature. Schubert polynomials are a positive sum of monomials and have distinct leading terms, therefore expanding any polynomial in the basis of Schubert polynomials can be done by linear algebra just like Schur functions.

Buch: Fastest approach to multiplying Schubert polynomials uses Lascoux and Schützenberger's transition equations. Works up to about $n=15$.

Draw Back. Schubert polynomials don't prove $c_{u v}^{w}$'s are nonnegative (except in special cases).

Cup Product in $H^{*}\left(\mathcal{F} l_{n}\right)$

Another Answer.

- By intersection theory: $\left[\boldsymbol{X}_{u}\right] \cdot\left[\boldsymbol{X}_{\boldsymbol{v}}\right]=\left[\boldsymbol{X}_{u}\left(\boldsymbol{E}_{\mathbf{\bullet}}\right) \cap \boldsymbol{X}_{\boldsymbol{v}}\left(\boldsymbol{F}_{\mathbf{\bullet}}\right)\right]$
- Perfect pairing: $\left[\boldsymbol{X}_{u}\left(\boldsymbol{E}_{\bullet}\right)\right] \cdot\left[\boldsymbol{X}_{\boldsymbol{v}}\left(\boldsymbol{F}_{\bullet}\right)\right] \cdot\left[\boldsymbol{X}_{\boldsymbol{w}_{0} w}\left(G_{\bullet}\right)\right]=c_{u v}^{w}\left[\boldsymbol{X}_{i d}\right]$

$$
\begin{gathered}
\| \\
{\left[\boldsymbol{X}_{u}\left(E_{\bullet}\right) \cap \boldsymbol{X}_{v}\left(\boldsymbol{F}_{\bullet}\right) \cap \boldsymbol{X}_{w_{0} w}\left(G_{\bullet}\right)\right]}
\end{gathered}
$$

- The Schubert variety $\boldsymbol{X}_{i d}$ is a single point in $\mathcal{F} l_{n}$.

Intersection Numbers: $c_{u v}^{w}=\# \boldsymbol{X}_{u}\left(\boldsymbol{E}_{\mathbf{\bullet}}\right) \cap \boldsymbol{X}_{\boldsymbol{v}}\left(\boldsymbol{F}_{\bullet}\right) \cap \boldsymbol{X}_{\boldsymbol{w}_{0} w}\left(\boldsymbol{G}_{\boldsymbol{\bullet}}\right)$ Assuming all flags $\boldsymbol{E}_{\bullet}, \boldsymbol{F}_{\bullet}, G_{\bullet}$ are in sufficiently general position.

Intersecting Schubert Varieties

Example. Fix three flags $\boldsymbol{R}_{\bullet}, G_{\bullet}$, and \boldsymbol{B}_{\bullet} :

Find $\boldsymbol{X}_{u}\left(\boldsymbol{R}_{\bullet}\right) \cap \boldsymbol{X}_{v}\left(G_{\bullet}\right) \cap \boldsymbol{X}_{\boldsymbol{w}}\left(\boldsymbol{B}_{\bullet}\right)$ where $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$ are the following permutations:

Intersecting Schubert Varieties

Example. Fix three flags $\boldsymbol{R}_{\bullet}, G_{\bullet}$, and B_{\bullet} :

Find $\boldsymbol{X}_{u}\left(\boldsymbol{R}_{\bullet}\right) \cap \boldsymbol{X}_{v}\left(G_{\bullet}\right) \cap \boldsymbol{X}_{\boldsymbol{w}}\left(\boldsymbol{B}_{\bullet}\right)$ where $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$ are the following permutations:

Intersecting Schubert Varieties

Example. Fix three flags $\boldsymbol{R}_{\bullet}, G_{\bullet}$, and B_{\bullet} :

Find $\boldsymbol{X}_{\boldsymbol{u}}\left(\boldsymbol{R}_{\bullet}\right) \cap \boldsymbol{X}_{\boldsymbol{v}}\left(G_{\bullet}\right) \cap \boldsymbol{X}_{\boldsymbol{w}}\left(\boldsymbol{B}_{\bullet}\right)$ where $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$ are the following permutations:

$R_{1} R_{2} R_{3}$				$G_{1} G_{2} G_{3}$				$B_{1} B_{2} B_{3}$			
P_{1}							1		1	1	
P			1		1	1		1			
P											1

Intersecting Schubert Varieties

Schubert's Problem. How many points are there usually in the intersection of \boldsymbol{d} Schubert varieties if the intersection is 0 -dimensional?

- Solving approx. n^{d} equations with $\binom{n}{2}$ variables is challenging!

Observation. We need more information on spans and intersections of flag components, e.g. $\operatorname{dim}\left(\boldsymbol{E}_{x_{1}}^{1} \cap \boldsymbol{E}_{x_{2}}^{2} \cap \cdots \cap \boldsymbol{E}_{x_{d}}^{d}\right)$.

Permutation Arrays

Theorem. (Eriksson-Linusson, 2000) For every set of \boldsymbol{d} flags $\boldsymbol{E}_{\bullet}^{1}, \boldsymbol{E}_{\boldsymbol{\bullet}}^{2}, \ldots, \boldsymbol{E}_{\boldsymbol{\bullet}}^{\boldsymbol{d}}$, there exists a unique permutation array $\boldsymbol{P} \subset[n]^{d}$ such that

$$
\operatorname{dim}\left(E_{x_{1}}^{1} \cap E_{x_{2}}^{2} \cap \cdots \cap E_{x_{d}}^{d}\right)=\operatorname{rk} P[x] .
$$

Totally Rankable Arrays

Defn. For $\boldsymbol{P} \subset[\boldsymbol{n}]^{d}$,

- $\operatorname{rk}_{j} \boldsymbol{P}=\#\left\{k \mid \exists x \in P\right.$ s.t. $\left.x_{j}=k\right\}$.
- P is rankable of rank r if $\mathrm{rk}_{j}(P)=r$ for all $1 \leq j \leq d$.
- $y=\left(y_{1}, \ldots, y_{d}\right) \preceq x=\left(x_{1}, \ldots, x_{d}\right)$ if $y_{i} \leq x_{i}$ for each i.
- $P[x]=\{y \in P \mid y \preceq x\}$
- \boldsymbol{P} is totally rankable if $\boldsymbol{P}[x]$ is rankable for all $\boldsymbol{x} \in[n]^{d}$.

- Union of dots is totally rankable. Including \boldsymbol{X} it is not.

		1
	1	2
1	2	3

- Points labeled O are redundant, i.e. including them gives another totally rankable array with same rank table.

Defn. $P \subset[n]^{d}$ is a permutation array if it is totally rankable and has no redundant dots.

Open. Count the number of permutation arrays in $[n]^{k}$.

Permutation Arrays

Theorem. (Eriksson-Linusson) Every permutation array in $[\boldsymbol{n}]^{d+1}$ can be obtained from a unique permutation array in $[\boldsymbol{n}]^{d}$ by identifying a sequence of antichains.

This produces the 3-dimensional array

$$
P=\{(4,4,1),(2,4,2),(4,2,2),(3,1,3),(1,4,4),(2,3,4)\}
$$

			4
		4	2
3			
	2		1

Unique Permutation Array Theorem

Theorem.(Billey-Vakil, 2005) If

$$
\boldsymbol{X}=\boldsymbol{X}_{\boldsymbol{w}^{1}}\left(\boldsymbol{E}_{\bullet}^{1}\right) \cap \cdots \cap \boldsymbol{X}_{\boldsymbol{w}^{d}}\left(\boldsymbol{E}_{\bullet}^{d}\right)
$$

is nonempty 0 -dimensional intersection of d Schubert varieties with respect to flags $E_{\bullet}^{1}, E_{\bullet}^{2}, \ldots, E_{\boldsymbol{d}}^{d}$ in general position, then there exists a unique permutation array $\boldsymbol{P} \in[n]^{d+1}$ such that

$$
\begin{equation*}
X=\left\{F_{\bullet} \mid \operatorname{dim}\left(E_{x_{1}}^{1} \cap E_{x_{2}}^{2} \cap \cdots \cap E_{x_{d}}^{d} \cap F_{x_{d+1}}\right)=\operatorname{rkP} P[x] \cdot\right\} \tag{1}
\end{equation*}
$$

Furthermore, we can recursively solve a family of equations for \boldsymbol{X} using \boldsymbol{P}.

Current Research

Open Problem. Can one find a finite set of rules for moving dots in a 3-d permutation array which determines the $c_{u v}^{w}$'s analogous to one of the many Littlewood-Richardson rules?

Recent Progress/Open question. Izzet Coskun's Mondrian tableaux. Can his algorithm be formulated succinctly enough to program without solving equations?

Open Problem. Give a minimal list of relations for $\boldsymbol{H}^{*}\left(\boldsymbol{X}_{\boldsymbol{w}}\right)$. (See recent work of Reiner-Woo-Yong.)

Generalizations of Schubert Calculus for $\boldsymbol{G} / \boldsymbol{B}$

1993-2013: A Highly Productive Score.

$$
\left\{\begin{array}{l}
\text { A: } G L_{n} \\
\text { B: } S O_{2 n+1} \\
\text { C: } \boldsymbol{S P _ { 2 n }} \\
\text { D: } S O_{2 n} \\
\text { Semisimple Lie Groups } \\
\text { Kac-Moody Groups } \\
\text { GKM Spaces }
\end{array}\right\} \times\left\{\begin{array}{l}
\text { cohomology } \\
\text { quantum } \\
\text { equivariant } \\
\text { K-theory } \\
\text { eq. K-theory }
\end{array}\right\}
$$

Recent Contributions from: Bergeron, Berenstein, Billey, Brion, Buch, Carrell, Ciocan-Fontainine, Coskun, Duan, Fomin, Fulton, Gelfand, Goldin, Graham, Griffeth, Guillemin, Haibao, Haiman, Holm, Huber, Ikeda, Kirillov, Knutson, Kogan, Kostant, Kresh, S. Kumar, A. Kumar, Lam, Lapointe, Lascoux, Lenart, Miller, Morse, Naruse, Peterson, Pitti, Postnikov, Purhboo, Ram, Richmond, Robinson, Shimozono, Sottile, Sturmfels, Tamvakis, Thomas, Vakil, Winkle, Woodward, Yong, Zara. . .

Some Recommended Further Reading

1. "Schubert Calculus" by Steve Kleiman and Dan Laksov. The American Mathematical Monthly, Vol. 79, No. 10. (Dec., 1972), pp. 1061-1082.
2. "The Symmetric Group" by Bruce Sagan, Wadsworth, Inc., 1991.
3. "Young Tableaux" by William Fulton, London Math. Soc. Stud. Texts, Vol. 35, Cambridge Univ. Press, Cambridge, UK, 1997.
4. "Determining the Lines Through Four Lines" by Michael Hohmeyer and Seth Teller, Journal of Graphics Tools, 4(3):11-22, 1999.
5. "Honeycombs and sums of Hermitian matrices" by Allen Knutson and Terry Tao. Notices of the AMS, February 2001; awarded the Conant prize for exposition.

Some Recommended Further Reading

6. "A geometric Littlewood-Richardson rule" by Ravi Vakil, Annals of Math. 164 (2006), 371-422.
7. "Flag arrangements and triangulations of products of simplices" by Sara Billey and Federico Ardila, Adv. in Math, volume 214 (2007), no. 2, 495-524.
8. "A Littlewood-Richardson rule for two-step flag varieties" by Izzet Coskun. Inventiones Mathematicae, volume 176, no 2 (2009) p. 325-395.
9. "A Littlewood-Richardson Rule For Partial Flag Varieties" by Izzet Coskun. Manuscript. http://homepages.math.uic.edu/~coskun/.
10. "Sage:Creating a Viable Free Open Source Alternative to Magma, Maple, Mathematica, and Matlab" by William Stein. http://wstein.org/books/ sagebook/sagebook.pdf, Jan. 2012.

Generally, these published papers can be found on the web. The books are well worth the money.

